A computational method for self-adjoint singular perturbation problems using quintic spline
نویسندگان
چکیده
منابع مشابه
Reliable Finite Element Methods for Self-adjoint Singular Perturbation Problems
It is well known that the standard finite element method based on the space Vh of continuous piecewise linear functions is not reliable in solving singular perturbation problems. It is also known that the solution of a two-point boundary-value singular perturbation problem admits a decomposition into a regular part and a finite linear combination of explicit singular functions. Taking into acco...
متن کاملHigh order fitted operator numerical method for self-adjoint singular perturbation problems
We consider self-adjoint singularly perturbed two-point boundary value problems in conservation form. Highest possible order of uniform convergence for such problems achieved hitherto, via fitted operator methods, was one (see, e.g., [Doolan et al. Uniform numerical methods for problems with initial and boundary layers, Boole Press, Dublin, 1980], p. 121]). Reducing the original problem into th...
متن کاملUniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems
We design non-standard finite difference schemes for self-adjoint singularly perturbed two-point boundary value problems. Essential physical properties (e.g., dissipativity) of the solutions of such problems are captured in the schemes by an appropriate renormalization of the denominator of the discrete derivative. The schemes are analyzed for -uniform convergence. Several numerical examples ar...
متن کاملExponentially Fitted Spline Approximation Method for Solving Selfadjoint Singular Perturbation Problems
A numerical method based on cubic spline with exponential fitting factor is given for the selfadjoint singularly perturbed two-point boundary value problems. The scheme derived in this method is second-order accurate. Numerical examples are given to support the predicted theory.
متن کاملGeometry of the Computational Singular Perturbation Method
The Computational Singular Perturbation (CSP) method, developed by Lam and Goussis [Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1988, pp. 931–941], is a commonly-used method for finding approximations of slow manifolds in systems of ordinary differential equations (ODEs) with multiple time scales. The validity of the CSP method was established fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2005
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2005.04.017